Polymeric Surface
   HOME

TheInfoList



OR:

Polymeric A polymer (; Greek '' poly-'', "many" + '' -mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic an ...
materials have widespread application due to their versatile characteristics, cost-effectiveness, and highly tailored production. The science of polymer synthesis allows for excellent control over the properties of a bulk polymer sample. However, surface interactions of polymer substrates are an essential area of study in
biotechnology Biotechnology is the integration of natural sciences and engineering sciences in order to achieve the application of organisms, cells, parts thereof and molecular analogues for products and services. The term ''biotechnology'' was first used b ...
,
nanotechnology Nanotechnology, also shortened to nanotech, is the use of matter on an atomic, molecular, and supramolecular scale for industrial purposes. The earliest, widespread description of nanotechnology referred to the particular technological goal o ...
, and in all forms of
coating A coating is a covering that is applied to the surface of an object, usually referred to as the Substrate (materials science), substrate. The purpose of applying the coating may be decorative, functional, or both. Coatings may be applied as liquid ...
applications. In these cases, the surface characteristics of the polymer and material, and the resulting forces between them largely determine its utility and reliability. In
biomedical Biomedicine (also referred to as Western medicine, mainstream medicine or conventional medicine)
applications for example, the bodily response to foreign material, and thus
biocompatibility Biocompatibility is related to the behavior of biomaterials in various contexts. The term refers to the ability of a material to perform with an appropriate host response in a specific situation. The ambiguity of the term reflects the ongoing de ...
, is governed by surface interactions. In addition,
surface science Surface science is the study of physical and chemical phenomena that occur at the interface of two phases, including solid–liquid interfaces, solid–gas interfaces, solid–vacuum interfaces, and liquid–gas interfaces. It includes the fiel ...
is integral part of the formulation, manufacturing, and application of coatings. __TOC__


Chemical methods

A polymeric material can be functionalized by the addition of small moieties,
oligomers In chemistry and biochemistry, an oligomer () is a molecule that consists of a few repeating units which could be derived, actually or conceptually, from smaller molecules, monomers.Quote: ''Oligomer molecule: A molecule of intermediate relative ...
, and even other polymers (grafting copolymers) onto the surface or interface.


Grafting copolymers

image:graftingcopolymer.jpeg, 300px, The two methods of co-polymer grafting. Notice the difference in density of polymer chains, the equilibrium conformation of polymer molecules in solution gives the "mushroom" regime shown for the grafting-onto method. Grafting, in the context of polymer chemistry, refers to the addition of polymer chains onto a surface. In the so-called 'grafting onto' mechanism, a polymer chain adsorbs onto a surface out of solution. In the more extensive 'grafting from' mechanism, a polymer chain is initiated and propagated at the surface. Because pre-polymerized chains used in the 'grafting onto' method have a thermodynamically favored conformation in solution (an equilibrium hydrodynamic volume), their adsorption density is self-limiting. The
radius of gyration ''Radius of gyration'' or gyradius of a body about the axis of rotation is defined as the radial distance to a point which would have a moment of inertia the same as the body's actual distribution of mass, if the total mass of the body were concentr ...
of the polymer therefore is the limiting factor in the number of polymer chains that can reach the surface and adhere. The 'grafting from' technique circumvents this phenomenon and allows for greater grafting densities. The processes of grafting "onto", "from", and "through" are all different ways to alter the chemical reactivity of the surface they attach with. Grafting onto allows a preformed polymer, generally in a "mushroom regime", to adhere to the surface of either a droplet or bead in solution. Due to the larger volume of the coiled polymer and the
steric hindrance Steric effects arise from the spatial arrangement of atoms. When atoms come close together there is a rise in the energy of the molecule. Steric effects are nonbonding interactions that influence the shape ( conformation) and reactivity of ions ...
this causes, the grafting density is lower for 'onto' in comparison to 'grafting from'. The surface of the bead is wetted by the polymer and the interaction in the solution caused the polymer to become more flexible. The 'extended conformation' of the polymer grafted, or polymerized, from the surface of the bead means that the
monomer In chemistry, a monomer ( ; ''mono-'', "one" + '' -mer'', "part") is a molecule that can react together with other monomer molecules to form a larger polymer chain or three-dimensional network in a process called polymerization. Classification Mo ...
must be in the solution and there for lyophilic. This results with a polymer that has favorable interactions with the solution, allowing the polymer to form more linearly. Grafting from therefore has a higher grafting density since there are more access to chain ends.
Peptide Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. A ...
synthesis can provide one example of a 'grafting from' synthetic process. In this process, an
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha am ...
chain is grown by a series of
condensation reaction In organic chemistry, a condensation reaction is a type of chemical reaction in which two molecules are combined to form a single molecule, usually with the loss of a small molecule such as water. If water is lost, the reaction is also known as a ...
from a polymer bead surface. This grafting technique allows for excellent control over the peptide composition as the bonded chain can be washed without desorption from the polymer. Polymeric coatings are another area of applied grafting techniques. In the formulation of water-borne paint,
latex Latex is an emulsion (stable dispersion) of polymer microparticles in water. Latexes are found in nature, but synthetic latexes are common as well. In nature, latex is found as a milky fluid found in 10% of all flowering plants (angiosperms ...
particles are often surface modified to control particle dispersion and thus coating characteristics such as
viscosity The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the inte ...
, film formation, and environmental stability ( UV exposure and temperature variations).


Oxidation

Plasma Plasma or plasm may refer to: Science * Plasma (physics), one of the four fundamental states of matter * Plasma (mineral), a green translucent silica mineral * Quark–gluon plasma, a state of matter in quantum chromodynamics Biology * Blood pla ...
processing, corona treatment, and flame treatment can all be classified as surface oxidation mechanisms. These methods all involve cleavage of polymer chains in the material and the incorporation of
carbonyl In organic chemistry, a carbonyl group is a functional group composed of a carbon atom double-bonded to an oxygen atom: C=O. It is common to several classes of organic compounds, as part of many larger functional groups. A compound containing a ...
, and
hydroxyl In chemistry, a hydroxy or hydroxyl group is a functional group with the chemical formula and composed of one oxygen atom covalently bonded to one hydrogen atom. In organic chemistry, alcohols and carboxylic acids contain one or more hydroxy ...
functional groups In organic chemistry, a functional group is a substituent or moiety in a molecule that causes the molecule's characteristic chemical reactions. The same functional group will undergo the same or similar chemical reactions regardless of the rest ...
. The incorporation of
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as wel ...
into the surface creates a higher surface energy allowing the substrate to be coated.


Methodology


Oxidizing polymeric surfaces


Corona treatment

Corona treatment Corona treatment (sometimes referred to as air plasma) is a surface modification technique that uses a low temperature corona discharge plasma to impart changes in the properties of a surface. The corona plasma is generated by the application of ...
is a surface modification method using a low temperature corona discharge to increase the
surface energy In surface science, surface free energy (also interfacial free energy or surface energy) quantifies the disruption of intermolecular bonds that occurs when a surface is created. In solid-state physics, surfaces must be intrinsically less energe ...
of a material, often polymers and natural fibers. Most commonly, a thin polymer sheet is rolled through an array of high-voltage electrodes, using the plasma created to functionalize the surface. The limited penetration depth of such treatment provides vastly improved adhesion while preserving bulk mechanical properties. Commercially, corona treatment has been used widely for improved dye adhesion before printing text and images on plastic packaging materials. The hazardous nature of remnant ozone after corona treatment stipulates careful filtration and ventilation during processing, restricting its implementation to applications with strict catalytic filtered systems. This limitation prevents widespread use within open-line manufacturing processes Several factors influence the efficiency of the flame treatment such as air-to-gas ratio, thermal output, surface distance, and oxidation zone dwell time. Upon conception of the process, a corona treatment immediately followed film extrusions, but the development of careful transportation techniques allows treatment at an optimized location. Conversely, in-line corona treatments have been implemented into full-scale production lines such as those in the newspaper industry. These in-line solutions are developed to counteract the decrease in wetting characteristics caused by excessive solvent use.


Atmosphere- and pressure-dependent plasma processing

Plasma processing Plasma processing is a plasma-based material processing technology that aims at modifying the chemical and physical properties of a surface. Plasma processing techniques include: *Plasma activation *Plasma ashing *Plasma cleaning *Plasma electro ...
provides interfacial energies and injected monomer fragments larger than comparable processes. However, limited fluxes prevent high process rates. In addition, plasmas are thermodynamically unfavorable and therefore plasma-processed surfaces lack uniformity, consistency, and permanence. These obstacles with plasma processing preclude it from being a competitive surface modification method within industry. The process begins with production of plasma via ionization either by deposition on monomer mixtures or gaseous carrier ions. The power required to produce the necessary plasma flux can be derived from the active volume mass/energy balance: \textstyle \int\limits_ \, d= where is the active volume k^ is the ionization rate n_0 is the neutral density n_e is the electron density \tau_n is the ion loss by diffusion, convection, attachment, and recombination Dissipation is generally initiated via direct current (DC), radio frequency (RF), or microwave power. Gas ionization efficiency can decrease the power efficiency more than tenfold depending on the carrier plasma and substrate.


Flamed plasma processing

Flame treatment Flame treatment is the application of a gas flame to the surface of a material to improve adhesion. Polyolefins, especially polyethylene and polypropylene bond poorly, because they consist of long non-polar molecules. Without special treatment, ad ...
is a controlled, rapid, cost-effective method of increasing surface energy and wettability of polyolefins and metallic components. This high-temperature plasma treatment uses ionized gaseous oxygen via jet flames across a surface to add polar functional groups while melting the surface molecules, locking them into place upon cooling. Thermoplastic polyethylene and polypropylene treated with brief oxygen plasma exposure have seen contact angles as low as 22°, and the resulting surface modification can last years with proper packaging. Flame plasma treatment has become increasingly popular with intravascular devices such as balloon catheters due to the precision and cost-effectiveness demanded in the medical industry.


Grafting techniques

Grafting copolymers to a surface can be envisioned as fixing polymeric chains to a structurally different polymer substrate with the intention of changing surface functionality while preserving bulk mechanical properties. The nature and degree of surface functionalization is determined by both the choice of copolymer and the type and extent of grafting.


Photografting

The modification of inert surfaces of polyolefins, polyesters, and polyamides by grafting functional vinyl monomers has been used to increase hydrophobicity, dye absorption, and polymer adhesion. This photografting method is generally used during continuous filament or thin film processing. On a bulk commercial scale, the grafting technique is referred to as photoinitiated lamination, where desired surfaces are joined by grafting a polymeric adhesion network between the two films. The low adhesion and absorption of polyolefins, polyesters, and polyamides is improved by UV-irradiation of an initiator and monomer transferred through the vapor phase to the substrate. Functionalization of porous surfaces have seen great success with high temperature photografting techniques. In microfluidic chips, functionalizing channels allows directed flow to preserve lamellar behavior between and within junctions. The adverse turbulent flow in microfluidic applications can compound component failure modes due to the increased level of channel interdependency and network complexity. In addition, the imprinted design of microfluidic channels can be reproduced for photografting the corresponding channels with a high degree of accuracy.


Surface analytical techniques


Surface energy measurement

In industrial corona and plasma processes, cost-efficient and rapid analytical methods are required for confirming adequate surface functionality on a given substrate. Measuring the surface energy is an indirect method for confirming the presence of surface functional groups without the need for microscopy or spectroscopy, often expensive and demanding tools. Contact angle measurement (goniometry) can be used to find the surface energy of the treated and non-treated surface. Young's relation can be used to find surface energy assuming the simplification of experimental conditions to a three phase equilibrium (i.e. liquid drop applied to flat rigid solid surface in a controlled atmosphere), yielding \boldsymbol_ = \boldsymbol_ + \boldsymbol_~ where \boldsymbol_ denotes the surface energy of the solid–liquid, liquid–gas, or solid–gas interface is the measured contact angle A series of solutions with known surface tension (e.g., Dyne solutions) can be used to estimate the surface energy of the polymer substrate qualitatively by observing the wettability of each. These methods are applicable to macroscopic surface oxidation, as in industrial processing.


Infrared spectroscopy

In the case of oxidizing treatments, spectra taken from treated surfaces will indicate the presence of functionalities in carbonyl and hydroxyl regions according to the Infrared spectroscopy correlation table.


XPS and EDS

X-ray photoelectron spectroscopy X-ray photoelectron spectroscopy (XPS) is a surface-sensitive quantitative spectroscopic technique based on the photoelectric effect that can identify the elements that exist within a material (elemental composition) or are covering its surface, ...
(XPS) and
Energy-dispersive X-ray spectroscopy Energy-dispersive X-ray spectroscopy (EDS, EDX, EDXS or XEDS), sometimes called energy dispersive X-ray analysis (EDXA or EDAX) or energy dispersive X-ray microanalysis (EDXMA), is an analytical technique used for the elemental analysis or chemi ...
(EDS/EDX) are composition characterization techniques that use x-ray excitation of electrons to discrete energy levels to quantify chemical composition. These techniques provide characterization at surface depths of 1–10 nanometers, approximately the range of oxidation in plasma and corona treatments. In addition, these processes offer the benefit of characterizing microscopic variations in surface composition. In the context of plasma processed polymer surfaces, oxidized surfaces will obviously show a greater oxygen content. Elemental analysis allows for quantitative data to be obtained and used in the analysis of process efficiency.


Atomic force microscopy

Atomic force microscopy (AFM), a type of scanning force microscopy, was developed for mapping three-dimensional topographical variations in atomic surfaces with high resolution (on the order of fraction of nanometers). AFM was developed to overcome the material conduction limitations of electron transmission and scanning microscopy methods (SEM & STM). Invented by Binnig, Quate, and Gerbe in 1985, atomic force microscopy uses laser beam deflection to measure the variations in atomic surfaces. The method does not rely on the variation in electron conduction through the material, as the
scanning tunneling microscope A scanning tunneling microscope (STM) is a type of microscope used for imaging surfaces at the atomic level. Its development in 1981 earned its inventors, Gerd Binnig and Heinrich Rohrer, then at IBM Zürich, the Nobel Prize in Physics in 1986. ...
(STM) does, and therefore allow microscopy on nearly all materials, including polymers. The application of AFM on polymeric surfaces is especially favorable because polymer general lack of crystallinity leads to large variations in surface topography. Surface functionalization techniques such as grafting, corona treatment, and plasma processing increase the surface roughness greatly (compared to the unprocessed substrate surface) and are therefore accurately measured by AFM.


Applications


Biomaterials

Biomaterial A biomaterial is a substance that has been engineered to interact with biological systems for a medical purpose, either a therapeutic (treat, augment, repair, or replace a tissue function of the body) or a diagnostic one. As a science, biomateria ...
surfaces are often modified using light-activated mechanisms (such as photografting) to functionalize the surface without compromising bulk mechanical properties. The modification of surfaces to keep polymers biologically inert has found wide uses in biomedical applications such as cardiovascular stents and in many skeletal prostheses. Functionalizing polymer surfaces can inhibit protein adsorption, which may otherwise initiate cellular interrogation upon the implant, a predominant failure mode of medical prostheses. {, class="wikitable" , - ! Polymer !! Medical Application !! Functionalization Method & Purpose , - , Polyvinylchloride (PVC) , , Endotracheal tubes , , Plasma processed to increase hydrophobicity , - , Silicone rubber , , Breast implants , , Glow-discharge plasma processed coatings with
halofuginone Halofuginone, sold under the brand name Halocur, is a coccidiostat used in veterinary medicine. It is a synthetic halogenated derivative of febrifugine, a natural quinazolinone alkaloid which can be found in the Chinese herb ''Dichroa febrifuga'' ...
to prevent capsular fibrosis , - , Polyethylene (PE) , , Synthetic vascular grafts , ,
Polydimethylsiloxane Polydimethylsiloxane (PDMS), also known as dimethylpolysiloxane or dimethicone, belongs to a group of polymeric organosilicon compounds that are commonly referred to as silicones. PDMS is the most widely used silicon-based organic polymer, as its ...
(PDMS) microfluidic patterning for selective adsorption of fibronectin , - , Polymethylmethacrylate (PMMA) , , Intraocular lenses , , Photografting nanoelectromechanical structures to increase photopic sensitivity Narrow biocompatibility requirements within the medical industry have over the past ten years driven surface modification techniques to reach an unprecedented level of accuracy.


Coatings

image:Assoc thickening.jpg, 300px, Adsorbed functionalities (e.g., surfact molecules) on a dispersed polymer particle interact with solvated associative thickeners (e.g., aqueous cellulosic polymer) yielding novel rheological behavior. In water-borne coatings, an aqueous polymer dispersion creates a film on the substrate once the solvent has evaporated. Surface functionalization of the polymer particles is a key component of a coating formulation allowing control over such properties as dispersion, film formation temperature, and the coating rheology. Dispersing aids often involve steric or electrostatic repulsion of the polymer particles, providing colloidal stability. The dispersing aids adsorb (as in a grafting onto scheme) onto latex particles giving them functionality. The association of other additives, such as thickeners shown in the schematic to the right, with adsorbed polymer material give rise to complex rheological behavior and excellent control over a coating's flow properties.Elaissari, Abdelhamid. ''Colloidal Polymers: Synthesis and Characterization.'' Marcel Dekker 2003 New York


See also

* Surface modification *
Surface engineering Surface engineering is the sub-discipline of materials science which deals with the surface of solid matter. It has applications to chemistry, mechanical engineering, and electrical engineering (particularly in relation to semiconductor manufact ...
*
Tribology Tribology is the science and engineering of interacting surfaces in relative Motion (physics), motion. It includes the study and application of the principles of friction, lubrication and wear. Tribology is highly interdisciplinary, drawing on m ...


References

Polymer chemistry